Topics in Nonlinear and Robust Estimation Theory

نویسنده

  • Roni Mittelman
چکیده

We propose new methods to improve nonlinear filtering and robust estimation algorithms. In the first part of the dissertation, we propose an approach to approximating the ChapmanKolmogorov equation (CKE) for particle-based nonlinear filtering algorithms, using a new proposal distribution and the improved Fast Gauss Transform (IFGT). The new proposal distribution, used to obtain a Monte Carlo (MC) approximation of the CKE, is based on the proposal distribution found in the auxiliary marginal particle filter (AMPF). By using MC integration to approximate the integrals of the AMPF proposal distribution as well as the CKE, we demonstrate significant improvement in terms of both error and computation time. We consider the additive state noise case where the evaluation of the CKE is equivalent to performing kernel density estimation (KDE), thus fast methods such as the IFGT can be used. We also provide much improved performance bounds for the IFGT, and which unlike the previous bound, are consistent with the expectation that the error decreases as the truncation order of the IFGT increases. The experimental results show that we can obtain similar error to the sequential importance sampling (SIS) particle filter, while using fewer particles. In the second part, we consider the problem of estimating a Gaussian random parameter vector that is observed through a linear transformation with added white Gaussian noise when there are both eigenvalue and elementwise uncertainties in the covariance matrix. When the covariance matrix is known then the solution to the problem is given by the minimum mean squared error (MMSE) estimator. Recently a minimax approach in which the estimator is chosen to minimize the worst case of two criteria called the difference regret [28] and the ratio regret [29] in an eigenvalue uncertainty region was proposed. A closed form solution was also presented under the assumption that the Gram matrix of the model matrix weighted by the inverse covariance matrix of the noise vector, and the random parameter’s covariance matrix, are diagonalized by the same unitary matrix (we refer to this as the joint diagonalizability assumption). This assumption significantly limits the applicability of the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Robust Observer for General Form Nonlinear System: Theory, Design and Implementation

The problem of observer design for nonlinear systems has got great attention in the recent literature. The nonlinear observer has been a topic of interest in control theory. In this research, a modified robust sliding-mode observer (SMO) is designed to accurately estimate the state variables of nonlinear systems in the presence of disturbances and model uncertainties. The observer has a simple ...

متن کامل

Application of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum

Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...

متن کامل

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

Definition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics

In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009